Creating Cellular & Wireless (and Wired) Networks

Wireless community network
Wireless community networks or wireless community projects are the organizations that take a grassroots approach to providing a viable alternative to municipal wireless networks for consumers.
http://www.lcwireless.net/docs/buildingwirelesscommunitynetworks.pdf
http://www.mm.aueb.gr/publications/2011-ieee-com-mag-wcn.pdf
http://oziris.nyme.hu/~farkas/publications/wicon07.pdf

Neighborhood Internet service provider
A neighborhood internet service provider (NISP) is a small scale broadband internet service provider targeted at a single subdivision or neighborhood. They are built in a neighborhood to provide internet access to residents in the community, often using rooftop antennas in a hub-and-spoke arrangement to bridge the last few hundred feet to the residences (or possibly businesses).Such a network requires a local network engineer (often a volunteer) to maintain networkintegrity and monitor the quality of service.
http://www.uvlsrpc.org/files/1213/8117/8249/AppendixB_UnderstandingBroadband.pdf
http://www.snhpc.org/pdf/BroadbandPlanSNHPC033114.pdf
http://www.nashuarpc.org/files/6814/0914/9818/Broadband_Plan_FINAL_082714.pdf
https://www.cityofpaloalto.org/civicax/filebank/documents/39244

Cellular network
A cellular network or mobile network is a communications network where the last link is wireless. The network is distributed over land areas called cells, each served by at least one fixed-location transceiver, known as a cell site or base station. This base station provides the cell with the network coverage which can be used for transmission of voice, data and others.
http://www.ccs.neu.edu/home/rraj/Courses/6710/S10/Lectures/CellularNetworks.pdf
http://www2.cs.uidaho.edu/~krings/CS420/Notes.S12/420-12-14.pdf
http://www.cse.unt.edu/~rakl/class3510/CHAP10.pdf

Metropolitan area network
A metropolitan area network (MAN) is a computer network larger than a local area network, covering an area of a few city blocks to the area of an entire city, possibly also including the surrounding areas.
http://spirit.cs.ucdavis.edu/pubs/journal/MEN.pdf
http://www.etsi.org/deliver/etsi_i_ets/300200_300299/300211/01_60/ets_300211e01p.pdf
http://www.cse.wustl.edu/~jain/cis677-96/ftp/e_blan2.pdf
http://cs.uccs.edu/~cs522/F99802.PDF

Wide area network
A wide area network (WAN) is a telecommunications network or computer network that extends over a large geographical distance. Wide area networksoften are established with leased telecommunication circuits.
http://www.westnetinc.com/mkt/catalog/sampleunit/wans.pdf
http://www.hp.com/rnd/pdfs/WANDesignGuide.pdf
http://www.cisco.com/networkers/nw00/pres/2303.pdf
http://faculty.kfupm.edu.sa/coe/marwan/richfiles/Chapter%2003%20(Introduction%20to%20WAN%20Technologies).pdf
http://www.icta.ufl.edu/projects/publications/wanlan.pdf

Wireless WAN
A wireless wide area network (WWAN), is a form of wireless network. The larger size of a wide area network compared to a local area network requires differences in technology. Wireless networks of all sizes deliver data in the form of telephone calls, web pages, and streaming video.
http://www.afn.org/~afn48922/downs/wireless/wan
http://docstore.mik.ua/cisco/pdf/other/Cisco.Press.Deploying.License-Free.Wireless.Wide-Area.Networks.eBook-kB.pdf

Edge computing
Edge Computing is pushing the frontier of computing applications, data, and services away from centralized nodes to the logical extremes of a network. It enables analytics and knowledge generation to occur at the source of the data. This approach requires leveraging resources that may not be continuously connected to a network such as laptops, smartphones, tablets and sensors.
http://vis.pnnl.gov/pdf/fliers/EdgeComputing.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
http://www.cs.mcgill.ca/~ylin30/paper/LinY-DB-Replication.pdf

Grid computing
Grid computing is the collection of computer resources from multiple locations to reach a common goal. The grid can be thought of as a distributed system with non-interactive workloads that involve a large number of files. Grid computing is distinguished from conventional high performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed (thus not physically coupled) than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes.
http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf
http://www.buyya.com/papers/GridIntro-CSI2005.pdf

Cloud Computing
Cloud computing is a model for enabling ubiquitous, convenient, on-demand access to a shared pool of configurable computing resources. Cloud computing and storage solutions provide users and enterprises with various capabilities to store and process their data in third-party data centers. It relies on sharing of resources to achieve coherence and economies of scale, similar to a utility (like the electricity grid) over a network.
http://www.cloud-council.org/PG2CC_v2.pdf
https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf
https://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf
http://broadcast.rackspace.com/hosting_knowledge/whitepapers/Understanding-the-Cloud-Computing-Stack.pdf

Fog computing
Fog computing or fog networking, also known as Fogging, is an architecture that uses one or a collaborative multitude of end-user clients or near-user edge devices to carry out a substantial amount of storage (rather than stored primarily in cloud data centers), communication (rather than routed over the internet backbone), and control, configuration, measurement and management (rather than controlled primarily by network gateways such as those in the LTE (telecommunication) core).
http://2012.cloudconference.eu/media/filer_public/2012/11/14/2012-10-24_-_fog_computing_-_mario_nemirovsky.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/mcc/p13.pdf
http://www.ic.unicamp.br/~bit/mo809/seminarios/Marcio-Fog/suporte/Fog%20Computing-%20A%20Platform%20for%20Internet%20of%20Things%20and%20Analytics.pdf

Mobile cloud computing
Mobile Cloud Computing (MCC) is the combination of cloud computing, mobile computing and wireless networks to bring rich computational resources to mobile users, network operators, as well as cloud computing providers. The ultimate goal of MCC is to enable execution of rich mobile applications on a plethora of mobile devices, with a rich user experience.
https://www.eecis.udel.edu/~cshen/859/papers/survey_MCC.pdf
http://www.elsevier.com/__data/assets/pdf_file/0008/96947/Mobile-cloud-computing_a-survey.pdf
http://www.ijareeie.com/upload/september/4_Mobile%20Cloud%20Computing.pdf
http://www.cs.columbia.edu/~lierranli/coms6998-7Spring2014/papers/mcloud_mcs2012.pdf

Ubiquitous computing
Ubiquitous computing (ubicomp) is a concept in software engineering and computer science where computing is made to appear anytime and everywhere. In contrast to desktop computing, ubiquitous computing can occur using any device, in any location, and in any format. A user interacts with the computer, which can exist in many different forms, including laptop computers, tablets and terminals in everyday objects such as a fridge or a pair of glasses. The underlying technologies to support ubiquitous computing include Internet, advanced middleware, operating system, mobile code, sensors, microprocessors, new I/O and user interfaces, networks, mobile protocols, location and positioning and new materials.
http://www.cc.gatech.edu/fce/pubs/tochi-millenium.pdf
https://www.vs.inf.ethz.ch/publ/slides/MatternPorquerolles.pdf
http://www.mva.me/educational/hci/read/ubiquitous_computing.pdf
https://www.siop.org/tip/backissues/TIPApr02/pdf/394_044to052.pdf

Mobile Adhoc Networks
A mobile ad hoc network (MANET) is a continuously self-configuring, infrastructure-less network of mobile devices connected without wires. Each device in a MANET is free to move independently in any direction, and will therefore change its links to other devices frequently. Each must forward traffic unrelated to its own use, and therefore be a router. The primary challenge in building a MANET is equipping each device to continuously maintain the information required to properly route traffic. Such networks may operate by themselves or may be connected to the larger Internet.
http://www.cs.jhu.edu/~cs647/intro_adhoc.pdf
http://www.olsr.org/docs/wos3-olsr.pdf
http://eecs.ceas.uc.edu/~cordeicm/course/survey_ad_hoc.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.4584&rep=rep1&type=pdf
http://user.it.uu.se/~erikn/files/DK2-adhoc.pdf

B.A.T.M.A.N.
The Better Approach To Mobile Adhoc Networking (B.A.T.M.A.N.) is a routing protocol for multi-hop ad hoc networks which is under development by the “Freifunk” community and intended to replace OLSR. It can be used for mesh networks but this is not the only potential use.
http://www2.ensc.sfu.ca/~ljilja/ENSC427/Spring11/Projects/team9/ENSC427_Group9_batman_pres.pdf
http://home.in.tum.de/~oehlmann/ba.pdf
http://www.cc.gatech.edu/~vempala/C4G/mymanet.pdf
http://downloads.hundeboll.net/batman-slides.pdf

Mesh Networking & Wireless Mesh Networking
A mesh network is a network topology in which each node relays data for the network. All mesh nodes cooperate in the distribution of data in the network. Mesh networks can relay messages using either a flooding technique or a routing technique. With routing, the message is propagated along a path by hopping from node to node until it reaches its destination.
A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It is also a form of wireless ad hoc network. Wireless mesh networks often consist of mesh clients, mesh routers and gateways. The mesh clients are often laptops, cell phones and other wireless devices while the mesh routers forward traffic to and from the gateways which may, but need not, connect to the Internet.
http://www.ieee.li/pdf/viewgraphs/wireless_mesh_networking.pdf
http://www.csg.ethz.ch/education/lectures/ATCN/ws06_07/doc/WMN-BasicsWS0607-print.pdf
http://www.dsn.jhu.edu/~yairamir/Raluca_thesis.pdf
http://www.arubanetworks.com/pdf/technology/whitepapers/WP_WirelessMesh.pdf
http://195.70.43.12/Vista/wirelessmeshnetworkconceptsandbestpracticesguide35023.pdf
http://www.iaria.org/conferences2009/filesICWMC09/EugenBorcociTutorial.pdf

Crystal Oscillator Design
A crystal oscillator is an electronic oscillator circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a precise frequency. This frequency is commonly used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is the quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators, but other piezoelectric materials including polycrystalline ceramics are used in similar circuits.
http://www.eetkorea.com/ARTICLES/2001SEP/2001SEP06_AMD_AN.PDF
http://www.ece.ucsb.edu/Faculty/rodwell/Classes/ece218b/notes/Oscillators1.pdf
http://pdfserv.maximintegrated.com/en/an/TUT5265.pdf

Piezoelectricity
Piezoelectricity /piˌeɪzoʊˌilɛkˈtrɪsɪti/ is the electric charge that accumulates in certain solid materials (such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins)in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure. It is derived from the Greek piezo or piezein (πιέζειν), which means to squeeze or press, and electric or electron (ήλεκτρον), which means amber, an ancient source of electric charge. Piezoelectricity was discovered in 1880 by French physicists Jacques and Pierre Curie.
http://www.aurelienr.com/electronique/piezo/piezo.pdf
http://sstl.cee.illinois.edu/apss/files/21-Piezoelectric%20Sensors.pdf
http://sem.org/PDF/Change_Piezoelectric%20Technology%20Review.pdf

Antenna
An antenna (plural antennae or antennas), or aerial, is an electrical device which converts electric power into radio waves, and vice versa. It is usually used with a radio transmitter or radio receiver. In transmission, a radio transmitter supplies an electric current oscillating at radio frequency (i.e. a high frequency alternating current (AC)) to the antenna’s terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of an electromagnetic wave in order to produce a tiny voltage at its terminals, that is applied to a receiver to be amplified.
https://www.ncjrs.gov/pdffiles1/nij/185030b.pdf
http://wireless.ictp.it/handbook/C4.pdf
https://www.wpi.edu/Pubs/E-project/Available/E-project-042811-161838/unrestricted/ChuckFungFinalMQPpaper2.pdf
http://www.kathrein.pl/down/BasicAntenna.pdf

MIMO
In radio, multiple-input and multiple-output, or MIMO (pronounced as “my-moh” or “me-moh”), is a method for multiplying the capacity of a radio link using multiple transmit and receive antennas to exploit multipath propagation.
https://smartech.gatech.edu/bitstream/handle/1853/7480/bahceci_israfil_200512_phd.pdf
http://www.jhuapl.edu/techdigest/TD/td3002/Hampton.pdf

Antenna farm
Antenna farm or satellite dish farm or just dish farm are terms used to describe an area dedicated to television or radio telecommunications transmitting or receiving antenna equipment, such as C, Ku or Ka band satellite dish antennas, UHF/VHF/AM/FM transmitter towers or mobile cell towers.
http://k5rmg.com/wp-content/uploads/2015/08/Stealth-Antenna-Farm.pdf
http://www.zerobeat.net/r3403c.pdf
http://www.sadxa.org/w7yrv/Roy’s_Antenna_Farm.pdf

Passive repeater
A passive repeater or passive radio link deflection, is a reflective or sometimes refractive panel or other object that assists in closing a radio or microwave link, in places where an obstacle in the signal path blocks any direct, line of sight communication.
http://az276019.vo.msecnd.net/valmontstaging/vsna-resources/microflect-passive-repeater-catalog.pdf?sfvrsn=6
http://www.calzavara.it/download/en/datasheet/152/SM_._General_overview_Ground_mounted_SM.pdf

Ground station
A ground station, earth station, or earth terminal is a terrestrial radio station designed for extraplanetary telecommunication with spacecraft, or reception of radio waves from an astronomical radio source. Ground stations are located either on the surface of the Earth or in its atmosphere. Earth stations communicate with spacecraft by transmitting and receiving radio waves in the super high frequency or extremely high frequency bands (e.g., microwaves). When a ground station successfully transmits radio waves to a spacecraft (or vice versa), it establishes a telecommunications link. A principal telecommunications device of the ground station is the parabolic antenna.
http://www-3.unipv.it/dottIEIE/tesi/2007/m_formaggi.pdf
http://folk.uio.no/henninv/Master/Vangli%20Master.pdf
http://www.rroij.com/open-access/design-and-development-of-a-realtime-groundstation-software-system-and-small-satellite-forweather-monitoring-applications.pdf

Earth–Moon–Earth communication
Earth–Moon–Earth communication (EME), also known as moon bounce, is a radio communications technique which relies on the propagation of radio waves from an Earth-based transmitter directed via reflection from the surface of the Moon back to an Earth-based receiver.
http://physics.princeton.edu/pulsar/K1JT/EME_2010_Hbk.pdf
http://www.n1crs.org/Moonbounce1.pdf
http://www.redyns.com/Projects/EMME.pdf

Meteor burst communications
Meteor burst communications (MBC), also referred to as meteor scatter communications,[1] is a radio propagation mode that exploits the ionized trails of meteors during atmospheric entry to establish brief communications paths between radio stations up to 2,250 kilometres (1,400 mi) apart.
http://www.dtic.mil/dtic/tr/fulltext/u2/a207831.pdf
http://www.imo.net/imc2011/presentations/Helen%20Kharchenko%20-%20Radio%20physical%20model%20of%20the%20meteor%20trail%20with%20the%20specular%20reflection%20point.pdf
http://www.ntia.doc.gov/files/ntia/publications/89-241_ocr1_20130514113154_215619.pdf